高一数学,向量问题

 我来答
掌夏戏胭
2020-05-11 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.4万
采纳率:26%
帮助的人:760万
展开全部
向量的运算
设a=(x,y),b=(x',y')。
  
1、向量的加法
  向量的加法满足平行四边形法则和三角形法则。
  AB+BC=AC。
  a+b=(x+x',y+y')。
  a+0=0+a=a。
  向量加法的运算律:
  交换律:a+b=b+a;
  结合律:(a+b)+c=a+(b+c)。
  
2、向量的减法
  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.
0的反向量为0
  AB-AC=CB.
即“共同起点,指向被减”
  a=(x,y)
b=(x',y')

a-b=(x-x',y-y').
  
4、数乘向量
  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
  当λ>0时,λa与a同方向;
  当λ<0时,λa与a反方向;
  当λ=0时,λa=0,方向任意。
  当a=0时,对于任意实数λ,都有λa=0。
  注:按定义知,如果λa=0,那么λ=0或a=0。
  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
  数与向量的乘法满足下面的运算律
  结合律:(λa)·b=λ(a·b)=(a·λb)。
  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
  数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b。②
如果a≠0且λa=μa,那么λ=μ。
  
3、向量的的数量积
  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
  向量的数量积的坐标表示:a·b=x·x'+y·y'。
  向量的数量积的运算率
  a·b=b·a(交换率);
  (a+b)·c=a·c+b·c(分配率);
  向量的数量积的性质
  a·a=|a|的平方。
  a⊥b
〈=〉a·b=0。
  |a·b|≤|a|·|b|。
  向量的数量积与实数运算的主要不同点
  1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
  2、向量的数量积不满足消去律,即:由
a·b=a·c
(a≠0),推不出
b=c。
  3、|a·b|≠|a|·|b|
  4、由
|a|=|b|
,推不出
a=b或a=-b。
  
4、向量的向量积
  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
  向量的向量积性质:
  ∣a×b∣是以a和b为边的平行四边形面积。
  a×a=0。
  a∥b〈=〉a×b=0。
  向量的向量积运算律
  a×b=-b×a;
  (λa)×b=λ(a×b)=a×(λb);
  (a+b)×c=a×c+b×c.
  注:向量没有除法,“向量AB/向量CD”是没有意义的。
  
向量的三角形不等式
  1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
  ①
当且仅当a、b反向时,左边取等号;
  ②
当且仅当a、b同向时,右边取等号。
  2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
  ①
当且仅当a、b同向时,左边取等号;
  ②
当且仅当a、b反向时,右边取等号。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式