设集合M= -1,0,1 集合N=2,3,4,5,6 映射f:M→N使对于任意x...
设集合M=-1,0,1集合N=2,3,4,5,6映射f:M→N使对于任意x属于M都有x+f(x)+xf(x)为奇数,最后是2*5*5,为什么不是2+5+5呢?...
设集合M= -1,0,1 集合N=2,3,4,5,6 映射f:M→N使对于任意x属于M都有x+f(x)+xf(x)为奇数, 最后是2*5*5,为什么不是2+5+5呢?
展开
1个回答
展开全部
集合M中的元素1,0,1都要找到对应的象,才能组成一个映射,
取f(-1)=2或f(-1)=3,f(-1)=4,f(-1)=5,f(-1)=6,有5种;这只是给-1找到了象.
取f(0)=3或f(0)=5,有2种;
这只是给0找到了象.
取f(1)=2或f(1)=3,f(1)=4,f(1)=5,f(1)=6,有5种.这只是给1找到了象.
根据分步计数乘法原理可知共有5*2*5=50种.
若是2+5+5,是对于分类问题来说的.
取f(-1)=2或f(-1)=3,f(-1)=4,f(-1)=5,f(-1)=6,有5种;这只是给-1找到了象.
取f(0)=3或f(0)=5,有2种;
这只是给0找到了象.
取f(1)=2或f(1)=3,f(1)=4,f(1)=5,f(1)=6,有5种.这只是给1找到了象.
根据分步计数乘法原理可知共有5*2*5=50种.
若是2+5+5,是对于分类问题来说的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询