若整数a不能被2和3整除,求证:24|(a^2-1)
1个回答
展开全部
整数a不能被2和3整除,就不能给2,3,6整除.
设a=6n+1 或 a=6n-1
a^2-1必能被24整除
(a+1)(a-1)必能被24整除
6n*(6n+2)或6n*(6n-2)必能被24整除
12*n*(n+1)或12*n*(n-1)必能被24整除
因为n*(n+1)或n*(n-1)必有一个偶数,12*n*(n+1)或12*n*(n-1)必能被24整除
a^2-1必能被24整除
设a=6n+1 或 a=6n-1
a^2-1必能被24整除
(a+1)(a-1)必能被24整除
6n*(6n+2)或6n*(6n-2)必能被24整除
12*n*(n+1)或12*n*(n-1)必能被24整除
因为n*(n+1)或n*(n-1)必有一个偶数,12*n*(n+1)或12*n*(n-1)必能被24整除
a^2-1必能被24整除
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询