cosx(1-sinx)的最大值是多少?
1个回答
展开全部
答:
f(x)=cosx(1-sinx)
求导:
f'(x)=-sinx(1-sinx)+cosx*(-cosx)
=-sinx+(sinx)^2-1+(sinx)^2
=2(sinx)^2-sinx-1
=(2sinx+1)(sinx-1)
sinx=1或者sinx=-1/2时,f'(x)=0
-1<=sinx2时,f'(x)>0,f(x)单调递增
-1/2<=sinx<=1时,f'(x)<0,f(x)单调递减
sinx=-1/2、cosx=√3/2时取得最大值3√3/4
sinx=-1/2,cosx=-√3/2时取得最小值-3√3/4
f(x)=cosx(1-sinx)
求导:
f'(x)=-sinx(1-sinx)+cosx*(-cosx)
=-sinx+(sinx)^2-1+(sinx)^2
=2(sinx)^2-sinx-1
=(2sinx+1)(sinx-1)
sinx=1或者sinx=-1/2时,f'(x)=0
-1<=sinx2时,f'(x)>0,f(x)单调递增
-1/2<=sinx<=1时,f'(x)<0,f(x)单调递减
sinx=-1/2、cosx=√3/2时取得最大值3√3/4
sinx=-1/2,cosx=-√3/2时取得最小值-3√3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询