正项级数的拉贝判别法

 我来答
ok噜啦啦253
2023-05-28 · TA获得超过777个赞
知道大有可为答主
回答量:1.5万
采纳率:100%
帮助的人:219万
展开全部

正项级数的拉贝判别法如下:

拉贝判别法是将级数与通项为1/(n^alpha)的级数做比较,如果当n充分大时,n(a[n]/a[n+1]-1)〉=r>1,那么级数收敛。

正项级数的介绍如下:

由正数和零构成的级数称为正项级数。比较审敛法是判断正项级数敛散性的一种常用且非常有效的方法。无穷级数是高等数学的重要内容,是表示函数、研究函数的性质以及进行数值计算的一种工具。正项级数在无穷级数中占据了较大的比重,其题型丰富且灵活。

对于给定的正项级数,可以按照以下顺序对其敛散性进行判别:首先观察其通项是否趋于零,如果通项不趋于零,则级数发散。如果通项趋于零,可据级数通项的特点,考虑用比较审敛法、比值审敛法或根值审敛法。极其特殊的情况下,也可以用级数的部分和数列来判断级数的敛散性。

正项级数是指所有项都是非负数的级数,例如1+2+3+4+…就是一个正项级数。如一个正项级数的所有项都有上界,那么这个级数就是有界的。有界并不意味着收敛,因为有界的级数也可能是发散的。

正项级数有界并不一定收敛,但是如果一个正项级数收敛,那么它一定是有界的。这是因为如果一个正项级数收敛,那么它的部分和数列是单调递增有界的,根据单调有界原理,这个数列一定收敛,从而保证了级数的总和有限。

存在,则级数收敛;对于正项级数,其部分和数列是单调递增的,而单调有界则极限存在,所以正项级数收敛的充要条件只要求有界即可。级数收敛的定义和正项级数收敛的定义是普遍性和特殊性的关系:对于级数而言,如果部分和数列极限。

上海宇玫博生物科技有限公司
2018-06-11 广告
一、超速离心法,这是目前外泌体提取常用的方法 。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块, 由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种 方法得到的是微泡不是外泌体 。二、过滤离心, 这种操作简单... 点击进入详情页
本回答由上海宇玫博生物科技有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式