反三角函数之间的转换关系
反三角函数本质上是三角函数的反函数。
一个函数有反函数的充要条件是对应法则 f 是 双射(即一 一 映射,既要是单射也要是满射)(对正弦/余弦而言)三角函数只有在取半个周期的时候才满足双射的要求(否则多个x对应一个y,不满足双射中要求的单射)例如sin45=sin(90+45)=y=根号2/2。
所以单纯的三角函数的定义域可以给到无穷,而要有反三角函数这个定义(即反函数要存在),三角函数的定义域只能缩短到半个周期。根据反函数的定义,反函数的值域等于原函数的定义域,即正弦/余弦的反三角函数的值域等于三角函数的半个周期。
三角函数
一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。
cos(a+b)=cosxcosb-sinxsinb。
cos(a-b)=cosxcosb+sinxsinb。
sin(a+b)=sinxcosb+cosxsinb。
sin(a-b)=sinacosb-cosasinb。
tan(a+b)=(tana+tanb)/(1-tanatanb)。
tan(a-b)=(tana+tanb)/(1+tanatanb)。
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。