数学:探索规律题
观察下列等式:1/(1*2)=1-1/2,1/(2*3)=1/2-1/3,1/(3*4)=1/3-1/4以上三个等式两边分别相加得:1/(1*2)+1/(2*3)+1/(...
观察下列等式:1/(1*2)=1-1/2,1/(2*3)=1/2-1/3,1/(3*4)=1/3-1/4
以上三个等式两边分别相加得:
1/(1*2)+1/(2*3)+1/(3*4)=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4
(1)直接写出下列各式的计算结果:
1/(1*2)+1/(2*3)+1/(3*4)+……+1/[n(n+1)]=_______
(2)猜想并写出:1/[n(n+2)]=_______
(3)探究并解方程:
1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/[2x+18] 展开
以上三个等式两边分别相加得:
1/(1*2)+1/(2*3)+1/(3*4)=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4
(1)直接写出下列各式的计算结果:
1/(1*2)+1/(2*3)+1/(3*4)+……+1/[n(n+1)]=_______
(2)猜想并写出:1/[n(n+2)]=_______
(3)探究并解方程:
1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/[2x+18] 展开
2个回答
展开全部
(1)1/(1*2)+1/(2*3)+1/(3*4)+……+1/[n(n+1)]=1-1/(n+1)
(2)1/[n(n+2)]=(1/2)[1/n-1/(n+2)]
(3)1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/[2x+18]
(1/3)[1/x-1/(x+9)]=3/[2(x+9)]
1/3x-1/[3(x+9)]=3/[2(x+9)]
[2(x+9)]-2x=9x
2x+18-2x=9x
x=2
(2)1/[n(n+2)]=(1/2)[1/n-1/(n+2)]
(3)1/[x(x+3)]+1/[(x+3)(x+6)]+1/[(x+6)(x+9)]=3/[2x+18]
(1/3)[1/x-1/(x+9)]=3/[2(x+9)]
1/3x-1/[3(x+9)]=3/[2(x+9)]
[2(x+9)]-2x=9x
2x+18-2x=9x
x=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询