一道高中数学题,题目如下:
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/2,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+√2=0相切。设P(4,0),M,N是椭圆C...
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/2,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+√2=0相切。
设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连结PN交椭圆C于另一点E,求直线PN的斜率的取值范围。
请帮忙讲解一下步骤,非常感谢!O(∩_∩)O~ 展开
设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连结PN交椭圆C于另一点E,求直线PN的斜率的取值范围。
请帮忙讲解一下步骤,非常感谢!O(∩_∩)O~ 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询