
若点O和点F分别为椭圆(x^2/4)+(y^2/3)=1的中心和左焦点,点P为椭圆上的任意一点则向量OP*向量FP的最大值为
展开全部
op(x,y),FP(x+1,y),向量OP*向量FP=x(x+1)+y^2,把y^2=3-3x^2/4,那么向量OP*向量FP=x^2/4+x+3,由于x大于-2小于2,那么当x=2时取最大值,即向量OP*向量FP=6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200