平面直角坐标系的三角函数问题!

在平面直角坐标系xOy中有一三角形ABC,三个内角A,B,C所对的边分别为a,b,c,坐标原点与点B重合,且满足bsinC=‐2csinBcosA;(1)求∠A的值(2)... 在平面直角坐标系xOy中有一三角形ABC,三个内角A,B,C所对的边分别为a,b,c,坐标原点与点B重合,且满足bsinC=‐2csinBcosA;
(1)求∠A的值
(2)如果已知a=2√3,顶点A(√2,√2),求△ABC面积的值。
展开
78101557
高赞答主

2011-02-11 · 点赞后记得关注哦
知道大有可为答主
回答量:2万
采纳率:75%
帮助的人:1.2亿
展开全部
解:(1)
A+B+C=180
正弦定理
b/sinB=c/sinC
bsinC=-2csinBcosA
b/sinB=-2c/sinC×cosA
cosA=-1/2
A=120度,因为A是三角形的内角
(2)AB=√(√2-0)²+(√2-0)²=2(2点间距离公式)
根据余弦定理
cosA=(b²+c²-a²)/2bc
-bc=b²+c²-a²
-2b=b²+4-12
b²+2b-8=0
(b+4)(b-2)=0
b=2或b=-4(舍去)
三角形面积=1/2cbsinA=1/2×2×2×sin120=√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式