![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如果椭圆x^2/25+y^2/9=1的弦被点(2,1)平分,则该弦所在的直线方程是
2个回答
展开全部
设该弦所在的直线的斜率为 k ,则该直线方程是 y-1 = k(x-2) ,即:y = kx-(2k-1) 。
代入椭圆方程,整理得:(9+25k^2)x^2-50k(2k-1)x+25(2k-1)^2-225 = 0 ,
由韦达定理可得:x1+x2 = 50k(2k-1)/(9+25k^2) ;
已知该弦被点(2,1)平分,可得:(x1+x2)/2 = 2 ,
即有:25k(2k-1)/(9+25k^2) = 2 ,解得:k = -18/25 ;
所以,该弦所在的直线方程是 y = -(18/25)x+61/25 。
代入椭圆方程,整理得:(9+25k^2)x^2-50k(2k-1)x+25(2k-1)^2-225 = 0 ,
由韦达定理可得:x1+x2 = 50k(2k-1)/(9+25k^2) ;
已知该弦被点(2,1)平分,可得:(x1+x2)/2 = 2 ,
即有:25k(2k-1)/(9+25k^2) = 2 ,解得:k = -18/25 ;
所以,该弦所在的直线方程是 y = -(18/25)x+61/25 。
2011-02-26
展开全部
y = -(18/25)x+61/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询