3个回答
展开全部
1)
∵E是AB的中点,F 是CD的中点
∴EF‖AD
∴EG是△ABD的中位线
∴EG=1/2AD
同理:FH=1/2AD
∴EG =FH
(2)
连接AG并延长,交BC于点M
易证△ADG≌△BMG
∴AD=BM
由(1)得GH是△AMC的中位线
∴GH=1/2MC=1/2(BC-BM)=1/2(BC-AD)
∵E是AB的中点,F 是CD的中点
∴EF‖AD
∴EG是△ABD的中位线
∴EG=1/2AD
同理:FH=1/2AD
∴EG =FH
(2)
连接AG并延长,交BC于点M
易证△ADG≌△BMG
∴AD=BM
由(1)得GH是△AMC的中位线
∴GH=1/2MC=1/2(BC-BM)=1/2(BC-AD)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
∵E是AB的中点,F 是CD的中点
∴EF‖AD
∴EG是△ABD的中位线
∴EG=1/2AD
同理:FH=1/2AD
∴EG =FH
(2)
连接AG并延长,交BC于点M
易证△ADG≌△BMG
∴AD=BM
由(1)得GH是△AMC的中位线
∴GH=1/2MC=1/2(BC-BM)=1/2(BC-AD)
∵E是AB的中点,F 是CD的中点
∴EF‖AD
∴EG是△ABD的中位线
∴EG=1/2AD
同理:FH=1/2AD
∴EG =FH
(2)
连接AG并延长,交BC于点M
易证△ADG≌△BMG
∴AD=BM
由(1)得GH是△AMC的中位线
∴GH=1/2MC=1/2(BC-BM)=1/2(BC-AD)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
好办
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询