已知圆C;x^2+y^2-2ax-2(2a-1)y+4(a-1)=0 ,a属于实数,证明圆C恒过定点

匿名用户
2011-02-12
展开全部
重新整理得:
a(-2x-4y+4)+x^2+y^2+2y-4=0
a属于R,所以有:
-2x-4y+4=0……1
且x^2+y^2+2y-4=0……2
由1式得x=2y-2
带入2式得(2y-2)^2+y^2+2y-4=0
解得y=0或6/5
当y=0时 x=2
当y=6/5时 x=2/5

所以圆过定点(2,0)
百度网友95faa6c
2011-02-12 · TA获得超过822个赞
知道小有建树答主
回答量:322
采纳率:100%
帮助的人:493万
展开全部
利用曲线系思想,
圆C方程可以化为x^2+y^2+2y-4-2ax-4ay+4a=0
即x^2+y^2+2y-4-2a(x-2y+2)=0
表示过x^2+y^2-2y-4=0和x-2y+2=0焦点的圆系
算出交点为(2,2) (-2,0)即圆C恒过这两点。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式