如图,在底面为直角梯形的四棱锥P-ABCD中AD‖BC,∠ABC=90° ,PA⊥面ABC,PA=4,AD=2,AB=2√3,BC=6

求二面角P-BD-C的大小请用两种方法做、谢谢... 求二面角P-BD-C的大小

请用两种方法做、
谢谢
展开
 我来答
WSTX2008
2011-02-15 · TA获得超过5443个赞
知道大有可为答主
回答量:1452
采纳率:82%
帮助的人:642万
展开全部
法1(立体几何法)
二面角P-BD-C是二面角P-BD-A的补角。PB=√(PA^2+AB^2)=2√7,PD=√(PA^2+AD^2)=2√5,BD=√(AD^2+AB^2)=4。这是个锐角三角形,所以过P作BD的垂线垂足在BD上,作PE⊥BD交BD于E。设BE=x,则DE=4-x。由PB^2-BE^2=PD^2-DE^2得:(2√7)^2-x^2=(2√5)^2-(4-x)^2,解得x=3。故PE=√[(2√7)^2-3^2]=√19。
连接EA。则sin∠PEA=PA/PE=4/√19=4√19/19,∠PEA=arcsin4√19/19,所以二面角P-BD-C为π-arcsin4√19/19。

法2(空间向量法)
在图形空间建立三维直角坐标系,A为原点(0,0,0),向量AB方向为x轴正方向,向量AD方向为y轴正方向,向量AP方向为z轴正方向。
B(2√3,0,0),C(2√3,6,0),D(0,2,0),P(0,0,4)
平面PBD过P、B、D三点,其平面方程为x/2√3+y/2+z/4=1,化简得:2x+2√3y+√3z-4√3=0。则该平面方向向上的一条法向量n1=(2,2√3,√3)。
平面CBD过B、C、D三点,其平面方程为z=0。该平面方向向上的单位法向量n2=(0,0,1)。
两条法向量的夹角即为二面角P-BD-C的补角。
cos<n1,n2>=(n1·n2)/|n1||n2|=(2*0+2√3*0+√3*1)/√19=√57/19。
故二面角P-BD-C的大小为π-arccos√57/19=π-arcsin4√19/19
Haoritian
2011-02-14 · 超过37用户采纳过TA的回答
知道小有建树答主
回答量:99
采纳率:0%
帮助的人:48.4万
展开全部
图哪?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式