已知函数f(x)=ax³+(a-1)x²+48(a-2)x+b的图像关于原点成中心对称,试判断f(x)在区间|-4,

匿名用户
2011-03-01
展开全部
解:函数是关于原点中心对称,所以是奇函数。故有f(x)=-f(-x)代入解得
(a-1)^2+b=0,所以a=1,b=0.
则f(x)=x^3-48x
求导可得f'(x)=3x^2-48在区间(-4,4)时,
f'(x)<0恒成立。
故原函数在区间内单调递减。。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式