2个回答
展开全部
例1:求和(k=1→n) ∑k²
(k+1)³-k³=3k²+3k +1
故 k²=(1/3)[(k+1)³-k³-3k-1]
用k=1,2,3,...,n依次代入得:
1²=(1/3)[2³-1³-3×1-1]
2²=(1/3)[3³-2³-3×2-1]
3²=(1/3)[4³-3³-3×3-1]
................................
n²=(1/3)[(n+1)³-n³-3×n-1]
将以上n个等式相加,便得:
(k=1→n)∑k²=(1/3)[(n+1)³-1-3(1+2+3+...+n)-n}=(1/3)[(n+1)³-1-3(1+n)n/2-n}
=(1/3)[(n+1)³-3n(n+1)/2-(n+1)]=(1/3)(n+1)[(n+1)²-3n/2-1]
=(1/3)[2(n+1)²-3n-2]/3=(1/6)(n+1)(2n²+n)=n(n+1)(2n+1)/6
例2.求和(k=1→n)∑1/(k²+3k+2)
∵1/(k²+3k+1)=1/(k+1)(k+2)=1/(k+1)-1/(k+2)
∴(k=1→n)∑1/(k²+3k+2)=[1/2-1/3]+[1/3-1/4]+[1/4-1/5]+....+[1/(n+1)-1/(n+2)]
=1/2-1/(n+2)=n/2(n+2)
(k+1)³-k³=3k²+3k +1
故 k²=(1/3)[(k+1)³-k³-3k-1]
用k=1,2,3,...,n依次代入得:
1²=(1/3)[2³-1³-3×1-1]
2²=(1/3)[3³-2³-3×2-1]
3²=(1/3)[4³-3³-3×3-1]
................................
n²=(1/3)[(n+1)³-n³-3×n-1]
将以上n个等式相加,便得:
(k=1→n)∑k²=(1/3)[(n+1)³-1-3(1+2+3+...+n)-n}=(1/3)[(n+1)³-1-3(1+n)n/2-n}
=(1/3)[(n+1)³-3n(n+1)/2-(n+1)]=(1/3)(n+1)[(n+1)²-3n/2-1]
=(1/3)[2(n+1)²-3n-2]/3=(1/6)(n+1)(2n²+n)=n(n+1)(2n+1)/6
例2.求和(k=1→n)∑1/(k²+3k+2)
∵1/(k²+3k+1)=1/(k+1)(k+2)=1/(k+1)-1/(k+2)
∴(k=1→n)∑1/(k²+3k+2)=[1/2-1/3]+[1/3-1/4]+[1/4-1/5]+....+[1/(n+1)-1/(n+2)]
=1/2-1/(n+2)=n/2(n+2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询