已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)-x3]=2,则方程f(x

已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)-x3]=2,则方程f(x)-f′(x)=2的解所在的区间是()A.(0,1)B... 已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)-x3]=2,则方程f(x)-f′(x)=2的解所在的区间是(  )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 展开
 我来答
河腾中月梅1938
2015-01-08 · 超过53用户采纳过TA的回答
知道答主
回答量:171
采纳率:0%
帮助的人:58.8万
展开全部
由题意,可知f(x)-x3是定值,不妨令t=f(x)-x3,则f(x)=x3+t
又f(t)=t3+t=2,整理得(t-1)(t2+t+2)=0,解得t=1
所以有f(x)=x3+1
所以f(x)-f′(x)=x3+1-3x2=2,令F(x)=x3-3x2-1
可得F(3)=-1<0,F(4)=8>0,即F(x)=x3-3x2-1零点在区间(3,4)内
所以f(x)-f′(x)=2的解所在的区间是(3,4)
故选D
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式