在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)

在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M... 在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,△FMH是等腰直角三角形吗?请说明理由;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,△FMH是等腰直角三角形吗?请说明理由;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由) 展开
 我来答
血_暗_S则w15
2014-12-19 · 超过74用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:165万
展开全部
(1)△FMH是等腰直角三角形.
∵四边形BCGF和CDHN都是正方形,点N与点G重合,点M与点C重合,
∴FB=BM=MD=DH,∠FBM=∠MDH=90°,
在△FBM和△MDH中,
FB=DH
∠FBM=∠MDH=90°
BM=MD

∴△FBM≌△MDH(SAS),
∴FM=MH,
∵∠FMB=∠DMH=45°,
∴∠FMH=90°,
∴FM⊥HM,
∴△FMH是等腰直角三角形;

(2)△FMH是等腰直角三角形,
连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
MD=BF
∠FBM=∠MDH
MB=DH

∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形;

(3)△FMH是等腰直角三角形.
连接MB、MD,如图3,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
MD=BF
∠FBM=∠MDH
MB=DH

∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式