在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M...
在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,△FMH是等腰直角三角形吗?请说明理由;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,△FMH是等腰直角三角形吗?请说明理由;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)
展开
展开全部
(1)△FMH是等腰直角三角形.
∵四边形BCGF和CDHN都是正方形,点N与点G重合,点M与点C重合,
∴FB=BM=MD=DH,∠FBM=∠MDH=90°,
在△FBM和△MDH中,
,
∴△FBM≌△MDH(SAS),
∴FM=MH,
∵∠FMB=∠DMH=45°,
∴∠FMH=90°,
∴FM⊥HM,
∴△FMH是等腰直角三角形;
(2)△FMH是等腰直角三角形,
连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
,
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形;
(3)△FMH是等腰直角三角形.
连接MB、MD,如图3,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
,
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形.
∵四边形BCGF和CDHN都是正方形,点N与点G重合,点M与点C重合,
∴FB=BM=MD=DH,∠FBM=∠MDH=90°,
在△FBM和△MDH中,
|
∴△FBM≌△MDH(SAS),
∴FM=MH,
∵∠FMB=∠DMH=45°,
∴∠FMH=90°,
∴FM⊥HM,
∴△FMH是等腰直角三角形;
(2)△FMH是等腰直角三角形,
连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
|
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形;
(3)△FMH是等腰直角三角形.
连接MB、MD,如图3,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,且MB=CD=DH,
∴四边形BCDM是平行四边形,
∴∠CBM=∠CDM,
又∵∠FBP=∠HDC,
∴∠FBM=∠MDH,
在△FBM和△MDH中,
|
∴△FBM≌△MDH(SAS),
∴FM=MH,且∠MFB=∠HMD,
∵BC∥MD,
∴∠APM=∠FMD,
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°,
∴△FMH是等腰直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询