设函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值

设函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f′(x1x2)<0(f′(... 设函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f′(x1x2)<0(f′(x)为函数f(x)的导函数);(3)设g(x)=3ax2-ax+2+a,若f(x)+e-x≥g(x)对x∈R恒成立,求a取值范围. 展开
 我来答
喂喂嗯VIIMNJ
2014-09-11 · TA获得超过218个赞
知道答主
回答量:93
采纳率:0%
帮助的人:106万
展开全部
(1)解:f'(x)=ex-a.
若a≤0,则f'(x)>0,则函数f(x)是单调增函数,这与题设矛盾.
∴a>0,令f'(x)=0,则x=lna.
当x<lna时,f'(x)<0,f(x)是单调减函数;x>lna时,f'(x)>0,f(x)是单调增函数;
于是当x=lna时,f(x)取得极小值.
∵函数f(x)=ex-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),
∴f(lna)=a(2-lna)<0,
即a>e2.此时,存在1<lna,f(1)=e>0;
存在3lna>lna,f(3lna)=a3-3alna+a>a3-3a2+a>0,
又f(x)在R上连续,故a>e2为所求取值范围.…(4分)
(2)证明:∵
ex1?ax1+a=0
ex2?ax2+a=0
两式相减得a=
ex2?ex1
x2?x1

x2?x1
2
=s(s>0)
,则f′(
x1+x2
2
)=e
x1+x2
2
?
ex2?ex1
x2?x1
e
x1+x2
2
2s
[2s?(es?e?s)]

设g(s)=2s-(es-e-s),则g′(s)=2-(es+e-s)<0,∴g(s)是单调减函数,
则有g(s)<g(0)=0,而
e
x1+x2
2
2s
>0
,∴f′(
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消