已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值
已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)求证:无论m为何值,方程总有一个固定的根...
已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)求证:无论m为何值,方程总有一个固定的根;(3)若m为整数,且方程的两个根均为正整数,求m的值及方程所有的根.
展开
1个回答
展开全部
(1)∵△=b2-4ac=[-3(m-1)]2-4m(2m-3)=(m-3)2,
∵方程有两个不相等的实数根,
∴(m-3)2>0且 m≠0,
∴m≠3且 m≠0,
∴m的取值范围是m≠3且 m≠0;
(2)证明:由求根公式x=
=
,
∴x1=
=
=2?
,x2=
=1
∴无论m为何值,方程总有一个固定的根是1;
(3)∵m为整数,且方程的两个根均为正整数,
∴x1=2?
必为整数,
∴m=±1或m=±3,
当m=1时,x1=-1(舍去);当m=-1时,x1=5;当m=3时,x1=1;当m=-3时,x1=3.
∴m=-1或m=±3.
∵方程有两个不相等的实数根,
∴(m-3)2>0且 m≠0,
∴m≠3且 m≠0,
∴m的取值范围是m≠3且 m≠0;
(2)证明:由求根公式x=
?b±
| ||
2a |
3(m?1)±(m?3) |
2m |
∴x1=
3m?3+m?3 |
2m |
2m?3 |
m |
3 |
m |
3m?3?m+3 |
2m |
∴无论m为何值,方程总有一个固定的根是1;
(3)∵m为整数,且方程的两个根均为正整数,
∴x1=2?
3 |
m |
∴m=±1或m=±3,
当m=1时,x1=-1(舍去);当m=-1时,x1=5;当m=3时,x1=1;当m=-3时,x1=3.
∴m=-1或m=±3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询