如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=6
如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;...
如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求BMBP的值,如果不存在,请说明理由.
展开
1个回答
展开全部
(Ⅰ)证明:因为底面ABCD是菱形,AC∩BD=O,
所以O为AC,BD中点.-------------------------------------(1分)
又因为PA=PC,PB=PD,
所以PO⊥AC,PO⊥BD,---------------------------------------(3分)
所以PO⊥底面ABCD.----------------------------------------(4分)
(Ⅱ)解:由底面ABCD是菱形可得AC⊥BD,
又由(Ⅰ)可知PO⊥AC,PO⊥BD.
如图,以O为原点建立空间直角坐标系O-xyz.
由△PAC是边长为2的等边三角形,PB=PD=
,
可得PO=
,OB=OD=
.
所以A(1,0,0),C(?1,0,0),B(0,
,0),P(0,0,
).---------------------------------------(5分)
所以
=(1,0,
),
=(?1,0,
所以O为AC,BD中点.-------------------------------------(1分)
又因为PA=PC,PB=PD,
所以PO⊥AC,PO⊥BD,---------------------------------------(3分)
所以PO⊥底面ABCD.----------------------------------------(4分)
(Ⅱ)解:由底面ABCD是菱形可得AC⊥BD,
又由(Ⅰ)可知PO⊥AC,PO⊥BD.
如图,以O为原点建立空间直角坐标系O-xyz.
由△PAC是边长为2的等边三角形,PB=PD=
6 |
可得PO=
3 |
3 |
所以A(1,0,0),C(?1,0,0),B(0,
3 |
3 |
所以
CP |
3 |
AP |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|