如何证明三角形两边之和大于第三边,两边之差小于第三边
运用公理:两点之间线段最短,所以两边之和大于第三边,移项就得到两边之差小于第三边。
证明过程如下:
(1)因为AC之间是线段,而AB+CB不是直线。
(2)所以AB+CB>AC。
(3)所以三角形两边之和必然大于第三边。
两点之间线段最短是一个公理。又名线段公理。比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。
扩展资料:
“三角形两边之和大于第三边”为其引申内容,不能使用它来证明“两点之间线段最短”。
“三角形两边之和大于第三边”亦可由欧几里得几何的五条公设直接导出(参见《几何原本》命题20),而由此可以证明两点之间的折线段中,直线段最短。
三角形的一些性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
设三角形的三边长分别为a,b,c,由两点之间直线最短,可得a+b>c,根据不等式定理——不等式两边同时加或减同一个数,不等式方向不变,可得,a>c-b和b>c-a,同理,可证明其它。
即三角形中两边之差小于第三边。
由余弦定理延伸而来。
扩展资料:
设三角形ABC的三个顶角A、B、C所对的边为a、b、c,
则固定a、b的长度,并固定边a不动,边b围绕C点转动,
那么在边b转动过程中,点A与点B之间的距离,即边c的长度就在变化;
易知,在边b转动的过程中,
A、B两点的最短距离是,A、B、C共线,且∠ACB=0°,则c(min)=|a-b|;
A、B两点的最长距离是,A、B、C共线,且∠ACB=180°,则c(max)=a+b。
然而要想三点A、B、C能连成一个三角形,这三点是不能共线的,
即只有边c在它的两个极值之间变化才能构成一个三角形,
即边c必须满足|a-b|<c<a+b,即常说的:
三角形两边之和大于第三边,两边之差小于第三边。
判定
1、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。
2、如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。
3、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。
4、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。
参考资料:百度百科——三角形
证明:设三角形的三边长分别为a,b,c,由两点之间直线最短,可得a+b>c。
根据不等式定理——不等式两边同时加或减同一个数,不等式方向不变,可得,a>c-b和b>c-a,同理,可证明其它。
即三角形中两边之差小于第三边。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
扩展资料:
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。
按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
锐角三角形、直角三角形、钝角三角形判定方法:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
参考资料:百度百科-三角形
2015-10-30 · 知道合伙人人力资源行家
知道合伙人人力资源行家
向TA提问 私信TA
即三角形中两边之差小于第三边。
2、延伸:
证明三角形两边之和大于第三边,两边之差小于第三边
证明:设三角形ABC的三个顶角A、B、C所对的边为a、b、c,
则固定a、b的长度,并固定边a不动,边b围绕C点转动,
那么在边b转动过程中,点A与点B之间的距离,即边c的长度就在变化;
易知,在边b转动的过程中,
A、B两点的最短距离是,A、B、C共线,且∠ACB=0°,则c(min)=|a-b|;
A、B两点的最长距离是,A、B、C共线,且∠ACB=180°,则c(max)=a+b。
然而要想三点A、B、C能连成一个三角形,这三点是不能共线的,
即只有边c在它的两个极值之间变化才能构成一个三角形,
即边c必须满足|a-b|<c<a+b,即常说的:
三角形两边之和大于第三边,两边之差小于第三边
注:min是最小值,max是最大值的意思!
2013-06-22
即三角形中两边之差小于第三边。