数学题急救!!要详细过程!!
已知抛物线y²=2px(p>0),焦点F与一直线l与抛物线交于A,B两点,且│AF│+│BF│=8,且AB的垂直平分线横过定点S(6,0)①求抛物线方程②求△A...
已知抛物线y²=2px(p>0),焦点F与一直线l与抛物线交于A,B两点,且│AF│+│BF│=8,且AB的垂直平分线横过定点S(6,0)
①求抛物线方程
②求△ABS面积的最大值 展开
①求抛物线方程
②求△ABS面积的最大值 展开
1个回答
展开全部
解:
(1)设A(y1²/(2p),y1);B(y2²/(2p),y2);(y1<y2);则设AB中点为点M((y1²+y2²)/(4p),(y1+y2)/2);
可知抛物线y²=2px(p>0),其焦点F(p/2,0);准线方程x=-p/2;
则由抛物线定义可知:|AF|=y1²/(2p)+p/2;|BF|=y2²/(2p)+p/2;
故|AF|+|BF|=y1²/(2p)+p/2+y2²/(2p)+p/2=(y1²+y2²)/(2p)+p=8 ;
则M(4-p/2,(y1+y2)/2);AB的垂直平分线为MS;则向量AB*向量MS=0对于任意向量AB成立;
向量AB=((y2²-y1²)/(2p),y2-y1);向量MS=(2+p/2,-(y1+y2)/2);
则(y2²-y1²)/(2p)(2+p/2)-(y2-y1)(y1+y2)/2=0恒成立;则(2+p/2)/(2p)-1/2=0;
解之:p=4 ;故抛物线方程为y²=8x
(2)则向量AB=((y2²-y1²)/8,y2-y1);向量MS=(4,-(y1+y2)/2);
S△ABS=|AB||MS|/2=√{[(y2²-y1²)/8]²+(y2-y1)²}√{4²+[-(y1+y2)/2]²}/2
=(y2-y1)[64+(y1+y2)²]/32
又知:|AF|+|BF|=(y1²+y2²)/(2p)+p=8,p=4;则y1²+y2²=32;
则有(y2-y1)≤√(2*32)=8;当且仅当y1=-4;y2=4时取等;
则S△ABS=(y2-y1)[64+(y1+y2)²]/32=3(y2-y1)≤24;
故△ABS面积的最大值为24。.
希望能帮到你!
(1)设A(y1²/(2p),y1);B(y2²/(2p),y2);(y1<y2);则设AB中点为点M((y1²+y2²)/(4p),(y1+y2)/2);
可知抛物线y²=2px(p>0),其焦点F(p/2,0);准线方程x=-p/2;
则由抛物线定义可知:|AF|=y1²/(2p)+p/2;|BF|=y2²/(2p)+p/2;
故|AF|+|BF|=y1²/(2p)+p/2+y2²/(2p)+p/2=(y1²+y2²)/(2p)+p=8 ;
则M(4-p/2,(y1+y2)/2);AB的垂直平分线为MS;则向量AB*向量MS=0对于任意向量AB成立;
向量AB=((y2²-y1²)/(2p),y2-y1);向量MS=(2+p/2,-(y1+y2)/2);
则(y2²-y1²)/(2p)(2+p/2)-(y2-y1)(y1+y2)/2=0恒成立;则(2+p/2)/(2p)-1/2=0;
解之:p=4 ;故抛物线方程为y²=8x
(2)则向量AB=((y2²-y1²)/8,y2-y1);向量MS=(4,-(y1+y2)/2);
S△ABS=|AB||MS|/2=√{[(y2²-y1²)/8]²+(y2-y1)²}√{4²+[-(y1+y2)/2]²}/2
=(y2-y1)[64+(y1+y2)²]/32
又知:|AF|+|BF|=(y1²+y2²)/(2p)+p=8,p=4;则y1²+y2²=32;
则有(y2-y1)≤√(2*32)=8;当且仅当y1=-4;y2=4时取等;
则S△ABS=(y2-y1)[64+(y1+y2)²]/32=3(y2-y1)≤24;
故△ABS面积的最大值为24。.
希望能帮到你!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询