一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?(  )

A.152B.163C.165D.172... A.152
B.163
C.165
D.172
展开
考试资料网
2023-04-09 · 百度认证:赞题库官方账号
考试资料网
向TA提问
展开全部
【答案】:B

这题我们先认真审题,观察到被7除余2,说明加上5就可以被7整除了,被8除余3,说明加上5也可以整除了,从而推断该数加上5以后可被7和8整除,也就是56的倍数。因此这个数只可能是56—5,56×2—5,56×3—5,乘以4就超过200了,经检验发现只有56×3—5=163被9除余1符合要求,因此该数为163。故选B。(解该类试题应当注意:余数不同,但余数的补数相同,只要抓住两个余数相同,求这两个除数的最小公倍数,求公倍数的倍数,最后验证,问题得以解决!)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式