求助!!!已知:a>b>c>0,求证:(a^a)(b^b)(c^c)>(abc)^((a+b+c)/3)
2个回答
展开全部
要证:(a^a)(b^b)(c^c) > (abc)^((a+b+c)/3) ,
只要证:alna + blnb + clnc > ((a+b+c)/3)(lna+lnb+lnc) ,【不等式两边取对数】
只需证:(alna + blnb + clnc)/(a+b+c) > (lna+lnb+lnc)/3 ,【不等式两边同除以(a+b+c)】
此不等式左边是 lna,lnb,lnc 的加权平均值,右边是 lna,lnb,lnc 的算术平均值。
已知:a>b>c>0,可得:lna>lnb>lnc,
则有:大的数权重较大,小的数权重较小,
所以,加权平均值大于算术平均值,
即有:(alna + blnb + clnc)/(a+b+c) > (lna+lnb+lnc)/3 ,
所以,(a^a)(b^b)(c^c) > (abc)^((a+b+c)/3) 。
只要证:alna + blnb + clnc > ((a+b+c)/3)(lna+lnb+lnc) ,【不等式两边取对数】
只需证:(alna + blnb + clnc)/(a+b+c) > (lna+lnb+lnc)/3 ,【不等式两边同除以(a+b+c)】
此不等式左边是 lna,lnb,lnc 的加权平均值,右边是 lna,lnb,lnc 的算术平均值。
已知:a>b>c>0,可得:lna>lnb>lnc,
则有:大的数权重较大,小的数权重较小,
所以,加权平均值大于算术平均值,
即有:(alna + blnb + clnc)/(a+b+c) > (lna+lnb+lnc)/3 ,
所以,(a^a)(b^b)(c^c) > (abc)^((a+b+c)/3) 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询