求助!!!已知:a>b>c>0,求证:(a^a)(b^b)(c^c)>(abc)^((a+b+c)/3)

答得多
2011-02-22 · TA获得超过12.6万个赞
知道大有可为答主
回答量:1.1万
采纳率:100%
帮助的人:8531万
展开全部
要证:(a^a)(b^b)(c^c) > (abc)^((a+b+c)/3) ,
只要证:alna + blnb + clnc > ((a+b+c)/3)(lna+lnb+lnc) ,【不等式两边取对数】
只需证:(alna + blnb + clnc)/(a+b+c) > (lna+lnb+lnc)/3 ,【不等式两边同除以(a+b+c)】
此不等式左边是 lna,lnb,lnc 的加权平均值,右边是 lna,lnb,lnc 的算术平均值。

已知:a>b>c>0,可得:lna>lnb>lnc,
则有:大的数权重较大,小的数权重较小,
所以,加权平均值大于算术平均值,
即有:(alna + blnb + clnc)/(a+b+c) > (lna+lnb+lnc)/3 ,
所以,(a^a)(b^b)(c^c) > (abc)^((a+b+c)/3) 。
百度网友02e7fd743
2011-02-22 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5082
采纳率:75%
帮助的人:2537万
展开全部
证明:不等式变形为a^(2a-b-c)*b^(2b-a-c)*c^(2c-a-b)>0
(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)>1(1)
因为a>b>c>0所以a/b>1,a-b>0,故(a/b)^(a-b)>1
同理可得(b/c)^(b-c)>1,(c/a)^(c-a)>1
所以不等式(1)成立,故原不等式成立。
证毕!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式