已知函数f(x)=x平方+1
已知函数f(x)=x平方+1且g(x)=f[f(x)],G(x)=g(x)-cf(x),求是否存在实数c,使得G(x)在(负无穷大,-1〕为函数,并且在(-1,0)上为增...
已知函数f(x)=x平方+1且g(x)=f[f(x)],G(x)=g(x)-cf(x),求是否存在实数c,使得G(x)在(负无穷大,-1〕为函数,并且在(-1,0)上为增函数
展开
1个回答
展开全部
嵌套迭代函数首先应该表达出来!
那么
先把 g(x) 的形式具体写出来
g(x) = f[f(x)] = [f(x)]^2 + 1 = (x^2 +1)^2 + 1
= x^4 + 2x^2 + 2
G(x) = g(x)-cf(x)
= x^4 + 2x^2 + 2 - c(x^2 + 1)
= x^4 + (2-c)x^2 + 2-c
配方
G(x) = x^4 + 2*[(2-c)/2] x^2 + [(2-c)/2]^2 - [(2-c)/2]^2 + (2-c)
= [x^2 + (2-c)/2]^2 + ……
这是一个偶函数。关于y轴对称。
G(x)在( 负无穷,-1】上为减函数,并且在(-1,0)上为增函数
根据偶函数,则 G(x) 在 [0,1]上是减函数,在 [1 ,正无穷)上是增函数。
为了保证上述两性质,则
(2-c)/2 = -1
(2-c) = -2
c = 4
那么
先把 g(x) 的形式具体写出来
g(x) = f[f(x)] = [f(x)]^2 + 1 = (x^2 +1)^2 + 1
= x^4 + 2x^2 + 2
G(x) = g(x)-cf(x)
= x^4 + 2x^2 + 2 - c(x^2 + 1)
= x^4 + (2-c)x^2 + 2-c
配方
G(x) = x^4 + 2*[(2-c)/2] x^2 + [(2-c)/2]^2 - [(2-c)/2]^2 + (2-c)
= [x^2 + (2-c)/2]^2 + ……
这是一个偶函数。关于y轴对称。
G(x)在( 负无穷,-1】上为减函数,并且在(-1,0)上为增函数
根据偶函数,则 G(x) 在 [0,1]上是减函数,在 [1 ,正无穷)上是增函数。
为了保证上述两性质,则
(2-c)/2 = -1
(2-c) = -2
c = 4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询