如图,已知抛物线y=ax²+bx-3与x轴交于A、B两点,与y轴交于C点 30

经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为√5.设圆M与y轴交于D,抛物线的顶点为E。(1)求m的值及抛物线的解析式(2)设∠DBC=... 经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为√5.设圆M与y轴交于D,抛物线的顶点为E。
(1)求m的值及抛物线的解析式
(2)设∠DBC=α ,∠CBE=β ,求sin(α-β)的值
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,指出P的坐标

详细点,谢谢~急啊!!!
第一题不用了
展开
 我来答
5yh96ws
2011-02-27 · TA获得超过1514个赞
知道小有建树答主
回答量:786
采纳率:0%
帮助的人:655万
展开全部
解:(1)∵抛物线过O(0,0),A(1,-3),B(-1,5)三点,
解得 a= 1
b=-4
c=0 ;
∴抛物线的解析式为y=x2-4x;

(2)抛物线y=x2-4x与x轴的另一个交点坐标为C(4,0),连接EM;
∴⊙M的半径为2,即OM=DM=2;
∵ED、EO都是⊙M的切线,
∴EO=ED,△EOM≌△EDM;
∴S四边形EOMD=2S△OME=2× OM•OE=2m;设点D的坐标为(x0,y0),
∵S△DON=2S△DOM=2× OM×y0=2y0,
当S四边形EOMD=S△DON时,即2m=2y0,m=y0;
∵m=y0,ED‖x轴,
又∵ED为切线,
∴D点的坐标为(2,2);
∵P在直线ED上,故设P点的坐标为(x,2),
∵P在抛物线上,
∴2=x2-4x,
解得x=2±根号6 ;
∴P(2+ 根号6,2)或P(2-根号6 ,2)为所求.
追问
没过原点,C已经知道是-3了。

参考资料: 百度一下

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式