在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F。

求∠DOB的度数是几何题不是向量题... 求∠DOB的度数 是几何题 不是向量题 展开
百度网友7fbcd93538
2011-03-04 · TA获得超过11万个赞
知道大有可为答主
回答量:8799
采纳率:54%
帮助的人:4856万
展开全部
在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F,若向量AC=a,向量BD=b,求向量AF=?

答案 是(2/3)a+(1/3)b

DF:FC=1:2
做FG平行BD交AC于点G
FG:DO=2:3 CG:CO=2:3
所以GF等于(1/3)b
AG=AO+OG=(2/3)AC=(2/3)a
AF=AG+GF=(2/3)a+(1/3)b
578862148
2012-03-18
知道答主
回答量:5
采纳率:0%
帮助的人:5.8万
展开全部
用向量来解
OB向量=1/2DB向量 DO向量=1/2DB向量
有 a=xc b=yc 所以a=b 的定理
所以 OB向量∥ DO向量
又因为 两向量都有同一个点,所以就在同一条直线上了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
free天天爱天天
2013-03-07
知道答主
回答量:19
采纳率:0%
帮助的人:2.7万
展开全部
DF:FC=1:2
做FG平行BD交AC于点G
FG:DO=2:3 CG:CO=2:3
所以GF等于(1/3)b
AG=AO+OG=(2/3)AC=(2/3)a
AF=AG+GF=(2/3)a+(1/3)b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
郭敦顒
2014-04-15 · 知道合伙人教育行家
郭敦顒
知道合伙人教育行家
采纳数:7343 获赞数:32731
部队通令嘉奖,功臣单位代表,铁道部奖。

向TA提问 私信TA
展开全部
郭敦顒回答:
这题尚缺少AB或AD或其它方面的具体条件,不能给出AF的具体值,但再设定一个相关数据后,可得出关于AF的关系式——
设∠AOD=θ,θ是向量OC与向量OD间的夹角,亦即向量AC与向量BD间的夹角,
点E是平行四边形ABCD对角线BD的四等分点,靠近D,AE的延长线交CD于F,
∴DE=(3/4)BD,DE:BE=1:3,
∵在△EFD与△EAB中,∠FED=∠AEB(对顶角),
∠ABD=∠BDF(平行则内错角相等),∠ABD=∠ABE,∠BDF=∠EDF(同角),
∴∠ABE=∠EDF,
∴△EFD∽△EAB,∴FE/AE=DF/AB=DE/BE=1/3,
∴DF=AB/3,
在△OCD中,OC=| a|/2,OD= |b|/2,∠AOD=θ,
按余弦定理:cosθ=(|a|²/4+|b|²/4-CD²)/(|a||b|/2),
(ab/2)cosθ=|a|²/4+|b|²/4-CD²,
CD²= |a|²/4+|b|²/4-(|a||b|/2)cosθ,
AB=CD=√[| a|²/4+|b|²/4-(|a||b|/2)cosθ];
同理求得BC²=|a|²/4+|b|²/4-(|a||b|/2)cos(180°-θ),
AD=BC=√[ |a|²/4+|b|²/4-(|a|b|/2)cos(180°-θ)]。
在△ACD中,cos∠ADC =(AD²+CD²-a²)/(2 AD•CD)
∴∠ADC= arc cos[(AD²+CD²-|a|²)/(2 AD•CD)]。
∵DF=AB/3,∴DF={√[ |a|²/4+|b|²/4-(|a||b|/2)cosθ]}/3,
在△AFD中,∠ADF =∠ADC(同角),
cos∠ADF =(AD²+DF²-AF²)/(2 AD•DF),
(2 AD•DF)cos∠ADF =AD²+DF²-AF²,
AF²=AD²+DF²-(2 AD•DF)cos∠ADF,
∴AF=√{AD²+DF²-(2 AD•DF)cos∠ADF}。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Bury之吻
2011-03-12
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
你问错了,笨蛋,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式