请问为什么(1-sinx)/cosx = tan(x/2)?
2个回答
展开全部
错了。
(1 -sinx)/cosx = [ 1 -tan (x/2) ] / [ 1 +tan (x/2) ].
应该是:
(1 -cos x) /sin x = tan (x/2),
或:
sin x /(1 +cos x) = tan (x/2).
= = = = = = = = =
1. (1 -cos x) /sin x = tan (x/2).
证明:因为 cos x =1 -2 [ sin (x/2) ]^2,
sin x = 2 sin (x/2) cos (x/2),
所以 (1 -cos x) /sin x = 2 [ sin (x/2) ]^2 / [ 2 sin (x/2) cos (x/2) ]
= sin (x/2) / [ cos (x/2) ]
= tan (x/2).
= = = = = = = = =
2. sin x /(1 +cos x) = tan (x/2).
证明:因为 sin x = 2 sin (x/2) cos (x/2),
cos x = 2 [ cos (x/2) ]^2 -1,
所以 sin x /(1 +cos x) = ... =tan (x/2).
= = = = = = = = =
同理,
(1 +cos x) /sin x =sin x /(1 -cos x) = cot (x/2).
cos x = [ cos (x/2) ]^2 -[ sin (x/2) ]^2
= 1 -2 [ sin (x/2) ]^2
= 2 [ cos (x/2) ]^2 -1,
公式的选取很关键.
(1 -sinx)/cosx = [ 1 -tan (x/2) ] / [ 1 +tan (x/2) ].
应该是:
(1 -cos x) /sin x = tan (x/2),
或:
sin x /(1 +cos x) = tan (x/2).
= = = = = = = = =
1. (1 -cos x) /sin x = tan (x/2).
证明:因为 cos x =1 -2 [ sin (x/2) ]^2,
sin x = 2 sin (x/2) cos (x/2),
所以 (1 -cos x) /sin x = 2 [ sin (x/2) ]^2 / [ 2 sin (x/2) cos (x/2) ]
= sin (x/2) / [ cos (x/2) ]
= tan (x/2).
= = = = = = = = =
2. sin x /(1 +cos x) = tan (x/2).
证明:因为 sin x = 2 sin (x/2) cos (x/2),
cos x = 2 [ cos (x/2) ]^2 -1,
所以 sin x /(1 +cos x) = ... =tan (x/2).
= = = = = = = = =
同理,
(1 +cos x) /sin x =sin x /(1 -cos x) = cot (x/2).
cos x = [ cos (x/2) ]^2 -[ sin (x/2) ]^2
= 1 -2 [ sin (x/2) ]^2
= 2 [ cos (x/2) ]^2 -1,
公式的选取很关键.
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |