高数题,紧急!!
设f(x)在[a,b]上有二阶导数,又f'(a)=f'(b)=0.试证明:至少存在一点m属于(a,b),使得|f''(m)|>4[f(b)-f(a)]/(b-a)^2.情...
设f(x)在[a,b]上有二阶导数,又f'(a)=f'(b)=0.试证明:至少存在一点m属于(a,b),使得 |f''(m)|>4[f(b)-f(a)]/(b-a)^2.情况紧急,请高人指点!!谢谢!!
展开
3个回答
展开全部
由泰勒展开公式:
f(x)=f(a)+f''(ξ1)(x-a)²/2,
f(x)=f(b)+f''(ξ2)(x-b)²/2,ξ1,ξ2均在(a,b)内.
所以
f[(a+b)/2]-f(a)=f''(ξ1)(b-a)²/8
f[(a+b)/2]-f(b)=f''(ξ2)(b-a)²/8,两式相减取绝对值得
|f(b)-f(a)|=|f''(ξ1)-f''(ξ2)|(b-a)²/8
|f''(ξ1)-f''(ξ2)|=8|f(b)-f(a)|/(b-a)²
若记|f''(ξ1)|,|f''(ξ2)|中较大者为|f''(m)|,
则|f''(ξ1)-f''(ξ2)|≤|f''(ξ1)|+|f''(ξ2)|≤2|f''(m)|
从而|f''(m)|≥4|f(b)-f(a)|/(b-a)².
f(x)=f(a)+f''(ξ1)(x-a)²/2,
f(x)=f(b)+f''(ξ2)(x-b)²/2,ξ1,ξ2均在(a,b)内.
所以
f[(a+b)/2]-f(a)=f''(ξ1)(b-a)²/8
f[(a+b)/2]-f(b)=f''(ξ2)(b-a)²/8,两式相减取绝对值得
|f(b)-f(a)|=|f''(ξ1)-f''(ξ2)|(b-a)²/8
|f''(ξ1)-f''(ξ2)|=8|f(b)-f(a)|/(b-a)²
若记|f''(ξ1)|,|f''(ξ2)|中较大者为|f''(m)|,
则|f''(ξ1)-f''(ξ2)|≤|f''(ξ1)|+|f''(ξ2)|≤2|f''(m)|
从而|f''(m)|≥4|f(b)-f(a)|/(b-a)².
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
将f(x)分别在x=a,x=b处展开成带拉格朗日型余项的一阶泰勒公式
f(x)=f(a)+f'(a)(x-a)+(1/2!)f"(m1)(x-a)^2,(a<m1<x)
f(x)=f(b)+f'(b)(x-b)+(1/2!)f"(m2)(x-b)^2,(b<m2<x)
在公式中取x=(a+b)/2,并利用题设得
f[(a+b)/2]=f(a)+(1/2)f"(m1)[(b-a)/2]^2
f[(a+b)/2]=f(b)+(1/2)f"(m2)[(b-a)/2]^2
两式相减消去f[(a+b)/2]得
f"(m1)-f"(m2)=8[f(b)-f(a)]/(b-a)^2,则有
|f"(m1)|+|f"(m2)|>=8[f(b)-f(a)]/(b-a)^2
从而在m1,m2中至少有一个使得在该点的二阶导数的绝对值不小于4[f(b)-f(a)]/(b-a)^2,把该点取为m,则有m∈(a,b),使得|f''(m)|>=4[f(b)-f(a)]/(b-a)^2
将f(x)分别在x=a,x=b处展开成带拉格朗日型余项的一阶泰勒公式
f(x)=f(a)+f'(a)(x-a)+(1/2!)f"(m1)(x-a)^2,(a<m1<x)
f(x)=f(b)+f'(b)(x-b)+(1/2!)f"(m2)(x-b)^2,(b<m2<x)
在公式中取x=(a+b)/2,并利用题设得
f[(a+b)/2]=f(a)+(1/2)f"(m1)[(b-a)/2]^2
f[(a+b)/2]=f(b)+(1/2)f"(m2)[(b-a)/2]^2
两式相减消去f[(a+b)/2]得
f"(m1)-f"(m2)=8[f(b)-f(a)]/(b-a)^2,则有
|f"(m1)|+|f"(m2)|>=8[f(b)-f(a)]/(b-a)^2
从而在m1,m2中至少有一个使得在该点的二阶导数的绝对值不小于4[f(b)-f(a)]/(b-a)^2,把该点取为m,则有m∈(a,b),使得|f''(m)|>=4[f(b)-f(a)]/(b-a)^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询