已知等差数列{an}的前N项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n大于等于2) 求Sn 别用数学归纳法
3个回答
展开全部
http://zhidao.baidu.com/question/534128756.html
n>=2时 an=Sn-S(n-1)
又an=Sn+1/Sn+2可得 -S(n-1)=1/Sn+2
-S(n-1)-1=1/Sn+1
-[1+S(n-1)]=(1+Sn)/Sn
对之取倒数得 -1/[1+S(n-1)]=Sn/(1+Sn)=1-1/(1+Sn)
即 1/(1+Sn)-1/[1+S(n-1)]=1
因此 {1/(1+Sn)}是公差为1的等差数列
又S1=a1=-2/3 1/(1+S1)=3 所以等差数列首项为3
则 1/(1+Sn)=3+(n-1)*1=n+2
则 Sn=[1/(n+2)]-1
n=1时 S1=a1=-2/3 符合 S1=[1/(1+2)]-1=-2/3
综合得之 Sn=[1/(n+2)]-1
n>=2时 an=Sn-S(n-1)
又an=Sn+1/Sn+2可得 -S(n-1)=1/Sn+2
-S(n-1)-1=1/Sn+1
-[1+S(n-1)]=(1+Sn)/Sn
对之取倒数得 -1/[1+S(n-1)]=Sn/(1+Sn)=1-1/(1+Sn)
即 1/(1+Sn)-1/[1+S(n-1)]=1
因此 {1/(1+Sn)}是公差为1的等差数列
又S1=a1=-2/3 1/(1+S1)=3 所以等差数列首项为3
则 1/(1+Sn)=3+(n-1)*1=n+2
则 Sn=[1/(n+2)]-1
n=1时 S1=a1=-2/3 符合 S1=[1/(1+2)]-1=-2/3
综合得之 Sn=[1/(n+2)]-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
其中是Sn +1还是S(n+1),即那1,2是属于下标还是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询