已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切,过点P
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切,过点P(-4,0)作斜率为的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB...
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切,过点P(-4,0)作斜率为的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
解:
圆方程 x^2-10x+25+y^2=5,
(x-5)^2+y^2=5,
圆心(5,0),半径√5,
设一条渐近线方程为y=kx,
kx-y=0,
圆心(5,0)至渐近线距离(圆半径)R=|5k-0|/√(k^2+1)=√5,
25k^2=5k^2+5,
4k^2=1,
k=±1/2,
∴渐近线方程为:y=±1/2X,
(2)(2)由(1)可设双曲线G的方程为x2-4y2=m,
把直线l的方程y= 14(x+4)代入双曲线方程,
整理得3x2-8x-16-4m=0,
则xA+xB= 83,xAxB=- 16+4m3.
∵|PA|•|PB|=|PC|2,P、A、B、C共线且P在线段AB上,
∴(xP-xA)(xB-xP)=(xP-xC)2,即(xB+4)(-4-xA)=16,
整理得4(xA+xB)+xAxB+32=0.
将(*)代入上式得m=28,
我的问题是:
(2)由(1)可设双曲线G的方程为x2-4y2=m,这是怎么来的,双曲线方程不应该是x2/a2-y2/b2=m么。代入y=1/2X,等于x2/4-y2/1=m,去掉分母得x2-4y2=4m?为什么后面不是4m? 展开
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
解:
圆方程 x^2-10x+25+y^2=5,
(x-5)^2+y^2=5,
圆心(5,0),半径√5,
设一条渐近线方程为y=kx,
kx-y=0,
圆心(5,0)至渐近线距离(圆半径)R=|5k-0|/√(k^2+1)=√5,
25k^2=5k^2+5,
4k^2=1,
k=±1/2,
∴渐近线方程为:y=±1/2X,
(2)(2)由(1)可设双曲线G的方程为x2-4y2=m,
把直线l的方程y= 14(x+4)代入双曲线方程,
整理得3x2-8x-16-4m=0,
则xA+xB= 83,xAxB=- 16+4m3.
∵|PA|•|PB|=|PC|2,P、A、B、C共线且P在线段AB上,
∴(xP-xA)(xB-xP)=(xP-xC)2,即(xB+4)(-4-xA)=16,
整理得4(xA+xB)+xAxB+32=0.
将(*)代入上式得m=28,
我的问题是:
(2)由(1)可设双曲线G的方程为x2-4y2=m,这是怎么来的,双曲线方程不应该是x2/a2-y2/b2=m么。代入y=1/2X,等于x2/4-y2/1=m,去掉分母得x2-4y2=4m?为什么后面不是4m? 展开
1个回答
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询