在第一卦限内作椭球面x^2/a^2+y^2/b^2+z^2/c^2=1的切平面,使切平面与三个坐标面所围成的四面体体积最小

在第一卦限内作椭球面x^2/a^2+y^2/b^2+z^2/c^2=1的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.我想问的是用拉格朗日乘法做的时候为... 在第一卦限内作椭球面x^2/a^2+y^2/b^2+z^2/c^2=1的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.我想问的是用拉格朗日乘法做的时候为什么将这么设u=lnx0+lny0+lnz0?不要是应该是直接带入他的体积公式V=abc/(6x0y0z0)? 展开
俱怀逸兴壮思飞欲上青天揽明月
2014-06-13 · TA获得超过12.9万个赞
知道大有可为答主
回答量:1.4万
采纳率:78%
帮助的人:2943万
展开全部
因为体积最大,只要切平面的三个截距x0,y0,z0满足:x0y0z0最大即可。

为了计算方便,就取对数,ln(x0y0z0)=lnx0+lny0+lnz0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式