如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C...
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C= 4 5 ,DF=3,求⊙O的半径.
展开
1个回答
展开全部
(1)证明: (方法一)连接AC. ∵AB是⊙O的直径,且AB⊥CD于E, 由垂径定理得,点E是CD的中点; 又∵M是AD的中点, ∴ME是△DAC的中位线, ∴MN ∥ AC. ∵AB是⊙O的直径,∴∠ACB=90°. ∴∠MNB=90°,即MN⊥BC; (方法二)∵AB⊥CD,∴∠AED=∠BEC=90°. M是AD的中点, ∴ME=AM,即有∠MEA=∠A. ∵∠MEA=∠BEN,∠C=∠A, ∴∠C=∠BEN. 又∵∠C+∠CBE=90°, ∴∠CBE+∠BEN=90°, ∴∠BNE=90°,即MN⊥BC; (方法三)∵AB⊥CD,∴∠AED=90°. 由于M是AD的中点, ∴ME=MD,即有∠MED=∠EDM. 又∵∠CBE与∠EDA同对
∵∠MED=∠NEC, ∴∠NEC=∠CBE. ∵∠C+∠CBE=90°, ∴∠NEC+∠C=90°, 即有∠CNE=90°,即MN⊥BC. (2)连接BD. ∵∠BCD与∠BAF同对
∴cos∠A=cos∠C=
∵BF是⊙O的切线,∴∠ABF=90°. 在Rt△ABF中,cos∠A=
设AB=4x,则AF=5x,由勾股定理得:BF=3x. ∵AB是⊙O的直径,∴BD⊥AD, ∴△ABF ∽ △BDF, ∴
即
x=
∴直径AB=4x=4×
则⊙O的半径为
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询