
2个回答
展开全部
1)
1/x+1/y+1/z
=1²/x+1²/y+1²/z²
≥(1+1+1)²/(x+y+z)
=3²/3
=3,
故所求最小值为:3.
(2)x^2+y^2+z^2
≥(x+y+z)^2/(1+1+1)
=3;
9-(x^2+y^2+z^2)
=(x+y+z)^2-(x^2+y^2+z^2)
=2(xy+yz+zx)
>0,
∴x^2+y^2+z^2小于9
1/x+1/y+1/z
=1²/x+1²/y+1²/z²
≥(1+1+1)²/(x+y+z)
=3²/3
=3,
故所求最小值为:3.
(2)x^2+y^2+z^2
≥(x+y+z)^2/(1+1+1)
=3;
9-(x^2+y^2+z^2)
=(x+y+z)^2-(x^2+y^2+z^2)
=2(xy+yz+zx)
>0,
∴x^2+y^2+z^2小于9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询