已知:a.b是正实数,n是正整数,n不等于1,求证 a^n+b^n>=a^(n-1) b+a b^(n-1)
2个回答
展开全部
证:
a^n+b^n-a^(n-1)b-ab^(n-1)
=a[a^(n-1)-b^(n-1)]-b[a^(n-1)-b^(n-1)]
=(a-b)[a^(n-1)-b^(n-1)]
a>b时,a-b>0 a^(n-1)>b^(n-1),(a-b)[a^(n-1)-b^(n-1)]>0 a^n+b^n>a^(n-1)b+ab^(n-1)
a=b时,a-b=0 a^(n-1)-b^(n-1)=0,(a-b)[a^(n-1)-b^(n-1)]=0 a^n+b^n=a^(n-1)b+ab^(n-1)
a<b时,a-b<0 a^(n-1)-b^(n-1)<0,(a-b)[a^(n-1)-b^(n-1)]>0 a^n+b^n>a^(n-1)b+ab^(n-1)
综上,得a^n+b^n≥a^(n-1)b+ab^(n-1),当a=b时取等号。
a^n+b^n-a^(n-1)b-ab^(n-1)
=a[a^(n-1)-b^(n-1)]-b[a^(n-1)-b^(n-1)]
=(a-b)[a^(n-1)-b^(n-1)]
a>b时,a-b>0 a^(n-1)>b^(n-1),(a-b)[a^(n-1)-b^(n-1)]>0 a^n+b^n>a^(n-1)b+ab^(n-1)
a=b时,a-b=0 a^(n-1)-b^(n-1)=0,(a-b)[a^(n-1)-b^(n-1)]=0 a^n+b^n=a^(n-1)b+ab^(n-1)
a<b时,a-b<0 a^(n-1)-b^(n-1)<0,(a-b)[a^(n-1)-b^(n-1)]>0 a^n+b^n>a^(n-1)b+ab^(n-1)
综上,得a^n+b^n≥a^(n-1)b+ab^(n-1),当a=b时取等号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询