在三角形ABC中,a,b,c分别是角A,B,C所对的边,2bcosC=2a-c

完整题目请看图,重点是第二问怎么做啊,我算出ac=6后就不知道怎么做了... 完整题目请看图,重点是第二问怎么做啊,我算出ac=6后就不知道怎么做了 展开
 我来答
天空没蜻
2019-04-09 · TA获得超过3481个赞
知道大有可为答主
回答量:5054
采纳率:84%
帮助的人:208万
展开全部
(1)∵在△ABC中,ccosB+(2a+b)cosC=0,∴由正弦定理,可得sinCcosB+(2sinA+sinB)cosC=0,即sinCcosB+sinBcosC+2sinAcosC=0,所以sin(B+C)+2sinAcosC=0,∵△ABC中,sin(B+C)=sin(π-A)=sinA>0,∴sinA+2sinAcosC=0,即sinA(1+2cosC)=0,可得cosC=-12.又∵C是三角形的内角,∴C=2π3;(2)根据余弦定理,得c2=a2+b2-2abcosC,∵c=3,cosC=-12,∴3=a2+b2-2ab×(-12),整理得a2+b2=3-ab,又∵a2+b2≥2ab,∴3-ab≥2ab,可得ab≤1,由此可得:△ABC的面积S=12absinC=34ab≤34×1=34,∴当且仅当a=b=1时,△ABC面积的最大值为34.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式