设函数为f(X)=ax2+bx+c,且f(1)=-a÷2 若a大于0,求证:函数在区间(0,2)内至少有一个零点
2个回答
展开全部
f(1)=a+b+c=-a/2
∴b+c=-3a/2
∵3a>2c>2b
∴b<3a/2
c<3a/2
c>b
∴b+c<3a/2+3a/2=3a
即-3a/2<3a
a>0
b+c>b+b=2b
即-3a/2>2b
b/a<-3/4①
b+c<b+3a/2
即-3a/2<b+3a/2
-3a<b
b/a>-3②
结合①②-3<b/a<-3/4
对称轴x=-b/2a
∵-3<b/a<-3/4
∴3/8<-b/2a<3/2
在(0,2)上
f(1)=-a<0
说明f(-b/2a)<0
f(0)=c=(a+b+c)-a-b=-a/2-a-b=-3a/2-b
f(2)=4a+2b+c=3a+b+(a+b+c)=3a+b-a/2=5a/2+b
∵f(0)+f(2)=-3a/2-b+5a/2+b=a>0
∴f(0)和f(2)中至少有一个大于0
∴由函数的连续性可知(0,2)内至少有一个零点
∴b+c=-3a/2
∵3a>2c>2b
∴b<3a/2
c<3a/2
c>b
∴b+c<3a/2+3a/2=3a
即-3a/2<3a
a>0
b+c>b+b=2b
即-3a/2>2b
b/a<-3/4①
b+c<b+3a/2
即-3a/2<b+3a/2
-3a<b
b/a>-3②
结合①②-3<b/a<-3/4
对称轴x=-b/2a
∵-3<b/a<-3/4
∴3/8<-b/2a<3/2
在(0,2)上
f(1)=-a<0
说明f(-b/2a)<0
f(0)=c=(a+b+c)-a-b=-a/2-a-b=-3a/2-b
f(2)=4a+2b+c=3a+b+(a+b+c)=3a+b-a/2=5a/2+b
∵f(0)+f(2)=-3a/2-b+5a/2+b=a>0
∴f(0)和f(2)中至少有一个大于0
∴由函数的连续性可知(0,2)内至少有一个零点
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询