一个多边形截取一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是?

2007xxbb
2011-04-04 · TA获得超过1836个赞
知道小有建树答主
回答量:67
采纳率:0%
帮助的人:53.9万
展开全部

此题有三种情况:设此多边形边数为n

1、如果截去的角不经过原多边形的顶点,则原多边形截去一个角后的边数为n+1,利用多边形内角和公式可得:(n+1-2)×180°=1620°,,解得:n=10,所以原多边形边数为10.

2、如果截去的角经过原多边形的一个顶点,则原多边形截去一个角后的边数仍为n,利用多边形内角和公式可得:(n-2)×180°=1620°,,解得:n=11,所以原多边形边数为11.

3、如果截去的角经过原多边形的两个顶点,则原多边形截去一个角后的边数为n-1,利用多边形内角和公式可得:(n-1-2)×180°=1620°,,解得:n=12,所以原多边形边数为12.

综上所述:原凸多边形的边数可能为10或11或12.

另注:如果此题给出具体的图形是这三种情况中的某一种,那么答案就是唯一的,如果没给出图形答案就是三个。 下面以五边形为例画出三种情况供你参考:

_空虚似雪_
2011-04-04
知道答主
回答量:15
采纳率:0%
帮助的人:0
展开全部
不知道这里所说的截取是指什么?
我默认为把一个角剪掉,根据1620可知新多边形有11条边
而一个角由两条边组成,复原后删除了一个原来封闭的一条边,故原来多边形边数为11+2-1=12条
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
635878922
推荐于2016-12-02 · TA获得超过565个赞
知道答主
回答量:153
采纳率:0%
帮助的人:64.9万
展开全部
此题有三种情况:设此多边形边数为n
1、如果截去的角不经过原多边形的顶点,则原多边形截去一个角后的边数为n+1,利用多边形内角和公式可得:(n+1-2)×180°=1620°,,解得:n=10,所以原多边形边数为10.
2、如果截去的角经过原多边形的一个顶点,则原多边形截去一个角后的边数仍为n,利用多边形内角和公式可得:(n-2)×180°=1620°,,解得:n=11,所以原多边形边数为11.
3、如果截去的角经过原多边形的两个顶点,则原多边形截去一个角后的边数为n-1,利用多边形内角和公式可得:(n-1-2)×180°=1620°,,解得:n=12,所以原多边形边数为12.
综上所述:原凸多边形的边数可能为10或11或12.
另注:如果此题给出具体的图形是这三种情况中的某一种,那么答案就是唯一的,如果没给出图形答案就是三个。
我是广雅中学初二级的数学老师
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式