基本初等函数在其定义域内都是连续的吗?
1个回答
展开全部
应该是初等函数在其定义区间内是连续的,定义区间是包含在定义域内的区间。
初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的;
对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。
扩展资料:
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
设函数f(x)的定义域为D,区间I包含于D,如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询