已知a^2+b^2=1,c^2+d^2=1,ac+bd=0,求ab+cd
1个回答
展开全部
a^2+b^2-(c^2+d^2)=0
2(ac+bd)=0
a^2+2ac+c^2-(b^2-2bd+d^2)=0
(a+c)^2=(b-d)^2
所以:桐销a+c=±(b-d)
所局衡游拦高以:d+c=b-a或a+b=d-c
所以:(d+c)^2=(b-a)^2[(a+b)^2=(d-c)^2]
d^2+c^2+2dc=b^2+a^2-2ab[a^2+b^2+2ab=d^2+c^2-2dc]
dc=-ab [ab=-dc]
所以 ab+cd=0
2(ac+bd)=0
a^2+2ac+c^2-(b^2-2bd+d^2)=0
(a+c)^2=(b-d)^2
所以:桐销a+c=±(b-d)
所局衡游拦高以:d+c=b-a或a+b=d-c
所以:(d+c)^2=(b-a)^2[(a+b)^2=(d-c)^2]
d^2+c^2+2dc=b^2+a^2-2ab[a^2+b^2+2ab=d^2+c^2-2dc]
dc=-ab [ab=-dc]
所以 ab+cd=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询