已知椭圆x^2/2+y^2=1,求斜率为2的直线与椭圆相交所得弦中点的轨迹方程

 我来答
华源网络
2022-09-05 · TA获得超过5599个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
设直线方程为 y=2x+b,代入椭圆方程得 x^2+2(2x+b)^2=2,
化简得 9x^2+8bx+2b^2-2=0,
设直线与椭圆交于A(x1,y1),B(x2,y2),AB中点为P(x,y),则
Δ=(8b)^2-4*9*(2b^2-2)>0,(1)
且 2x=x1+x2=-8b/9,(2)
2y=y1+y2=2(x1+x2)+2b=2b/9 (3)
由(1)得 -3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式