急!已知公差不为零的等差数列{An}中,a1=1,a1,a3,a7成等比数列。
展开全部
a1=1
a3=a1+2d
a7=a1+6d
a1,a3,a7等比,a3=a1q,a7=a1q^2, a1a7=a1^2q^2=a3^2
a1(a1+6d)=(a1+2d)^2
6a1d=4a1d+4d^2
a1=2d
an=a1+(n-1)d=a1+(n-1)a1/2=a1(n+1)/2=(n+1)/2
a3=a1+2d
a7=a1+6d
a1,a3,a7等比,a3=a1q,a7=a1q^2, a1a7=a1^2q^2=a3^2
a1(a1+6d)=(a1+2d)^2
6a1d=4a1d+4d^2
a1=2d
an=a1+(n-1)d=a1+(n-1)a1/2=a1(n+1)/2=(n+1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a3=a1+2d=1+2d
a7=1+6d因为a1,a3,a7成等比数列
∴a3/a1=a7/a3
(1+2d)²=1+6d
得出d=1/2或d=0因为公差不为0 所以d=1/2
an=1+(n-1)*0.5=(n+1)/2
a7=1+6d因为a1,a3,a7成等比数列
∴a3/a1=a7/a3
(1+2d)²=1+6d
得出d=1/2或d=0因为公差不为0 所以d=1/2
an=1+(n-1)*0.5=(n+1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-09
展开全部
a3=a1+2d a7=a1+6d
∵a1,a3,a7成等比数列
∴(a1/a3)^2=a3/a7
代入得到8d=-12
d=-3/2
∴An=-3/2n+5/2
∵a1,a3,a7成等比数列
∴(a1/a3)^2=a3/a7
代入得到8d=-12
d=-3/2
∴An=-3/2n+5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询