跪求一道概率论题目(求分布函数的)~~~~
设X~N(0,1)1)求Y=min{X,1}和Z=max{X,1}的分布函数,并且画出其简图2)求Y+Z的分布函数3)求Y^2(即Y的平方)的分布函数要详细过程,哪位好心...
设X ~ N(0, 1)
1) 求Y = min {X, 1} 和 Z = max {X, 1} 的分布函数, 并且画出其简图
2) 求Y+Z 的分布函数
3) 求Y^2 (即Y的平方) 的分布函数
要详细过程,哪位好心人帮帮忙啊TAT 展开
1) 求Y = min {X, 1} 和 Z = max {X, 1} 的分布函数, 并且画出其简图
2) 求Y+Z 的分布函数
3) 求Y^2 (即Y的平方) 的分布函数
要详细过程,哪位好心人帮帮忙啊TAT 展开
3个回答
展开全部
X的分布函数为Φ(x), 也就是标准正态分布函数. 注意Φ(x)不是初等函数,因此只能把它当作已知函数来表达相应的结果。
1). 当t<1时,Y≤t蕴含Y<1,此时Y=X<1. 所以P(Y≤t)=P(X≤t)=Φ(t).
当t≥1时,Y≤1≤t恒成立,所以P(Y<=t)=1.
所以Y的分布函数为分段函数:t<1时为Φ(t), t≥1为1. 图你就自己画吧……
至于Z的分布函数,求法类似,结果为:t<1时为Φ(1), t≥1为Φ(t).
2). 注意:无论X与1大小关系如何,Y+Z=1+X. 而X ~ N(0, 1) => 1+X~N(1,1). 所以Y+Z的分布函数为Φ(t-1).
3). 设W=Y^2,W的分布函数为F(t). 显然t<0时F(t)=0.
当0≤t<1时,W≤t蕴含Y<1,此时Y=X<1. P(W≤t)=P(X^2≤t)=Φ(根号t)-Φ(-根号t)=2Φ(根号t)-1.
当t≥1时,Y≤1≤根号t. 此时P(W≤t)=P(Y≥-根号t)=1-Φ(-根号t)=Φ(根号t).
所以: t<0时F(t)=0; 0≤t<1时,F(t)=2Φ(根号t)-1;t≥1时F(t)=Φ(根号t).
1). 当t<1时,Y≤t蕴含Y<1,此时Y=X<1. 所以P(Y≤t)=P(X≤t)=Φ(t).
当t≥1时,Y≤1≤t恒成立,所以P(Y<=t)=1.
所以Y的分布函数为分段函数:t<1时为Φ(t), t≥1为1. 图你就自己画吧……
至于Z的分布函数,求法类似,结果为:t<1时为Φ(1), t≥1为Φ(t).
2). 注意:无论X与1大小关系如何,Y+Z=1+X. 而X ~ N(0, 1) => 1+X~N(1,1). 所以Y+Z的分布函数为Φ(t-1).
3). 设W=Y^2,W的分布函数为F(t). 显然t<0时F(t)=0.
当0≤t<1时,W≤t蕴含Y<1,此时Y=X<1. P(W≤t)=P(X^2≤t)=Φ(根号t)-Φ(-根号t)=2Φ(根号t)-1.
当t≥1时,Y≤1≤根号t. 此时P(W≤t)=P(Y≥-根号t)=1-Φ(-根号t)=Φ(根号t).
所以: t<0时F(t)=0; 0≤t<1时,F(t)=2Φ(根号t)-1;t≥1时F(t)=Φ(根号t).
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询