如图,P为△ABC边BC上的一点,且PC=2PB, 已知∠ABC=45°,∠APC=60°,求∠ACB的度数.
10个回答
展开全部
解:
因为 p为BC 边上一点
所以∠APC为△ABP的一个外角
所以∠APC=∠B+∠BAP
因为∠B=45° ∠APC=60°
所以∠BAP=15°
所以∠CAP=30°
因为三角形内角和为180
所以∠C=90°
因为 p为BC 边上一点
所以∠APC为△ABP的一个外角
所以∠APC=∠B+∠BAP
因为∠B=45° ∠APC=60°
所以∠BAP=15°
所以∠CAP=30°
因为三角形内角和为180
所以∠C=90°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
过C作AP的垂线CD,垂足为点D.连接BD;
∵△PCD中,∠APC=60°,
∴∠DCP=30°,PC=2PD,
∵PC=2PB,
∴BP=PD,
∴△BPD是等腰三角形,∠BDP=∠DBP=30°,
∵∠ABP=45°,
∴∠ABD=15°,
∵∠BAP=∠APC-∠ABC=60°-45°=15°,
∴∠ABD=∠BAD=15°,
∴BD=AD,
∵∠DBP=45°-15°=30°,∠DCP=30°,
∴BD=DC,
∴△BDC是等腰三角形,
∵BD=AD,
∴AD=DC,
∵∠CDA=90°,
∴∠ACD=45°,
∴∠ACB=∠DCP+∠ACD=75°,
故答案为:75.
∵△PCD中,∠APC=60°,
∴∠DCP=30°,PC=2PD,
∵PC=2PB,
∴BP=PD,
∴△BPD是等腰三角形,∠BDP=∠DBP=30°,
∵∠ABP=45°,
∴∠ABD=15°,
∵∠BAP=∠APC-∠ABC=60°-45°=15°,
∴∠ABD=∠BAD=15°,
∴BD=AD,
∵∠DBP=45°-15°=30°,∠DCP=30°,
∴BD=DC,
∴△BDC是等腰三角形,
∵BD=AD,
∴AD=DC,
∵∠CDA=90°,
∴∠ACD=45°,
∴∠ACB=∠DCP+∠ACD=75°,
故答案为:75.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:过C作AP的垂线CD,垂足为点D.连接BD;
∵△PCD中,∠APC=60°,
∴∠DCP=30°,PC=2PD,
∵PC=2PB,
∴BP=PD,
∴△BPD是等腰三角形,∠BDP=∠DBP=30°,
∵∠ABP=45°,
∴∠ABD=15°,
∵∠BAP=∠APC-∠ABC=60°-45°=15°,
∴∠ABD=∠BAD=15°,
∴BD=AD,
∵∠DBP=45°-15°=30°,∠DCP=30°,
∴BD=DC,
∴△BDC是等腰三角形,
∵BD=AD,
∴AD=DC,
∵∠CDA=90°,
∴∠ACD=45°,
∴∠ACB=∠DCP+∠ACD=75°,
故答案为:75.
∵△PCD中,∠APC=60°,
∴∠DCP=30°,PC=2PD,
∵PC=2PB,
∴BP=PD,
∴△BPD是等腰三角形,∠BDP=∠DBP=30°,
∵∠ABP=45°,
∴∠ABD=15°,
∵∠BAP=∠APC-∠ABC=60°-45°=15°,
∴∠ABD=∠BAD=15°,
∴BD=AD,
∵∠DBP=45°-15°=30°,∠DCP=30°,
∴BD=DC,
∴△BDC是等腰三角形,
∵BD=AD,
∴AD=DC,
∵∠CDA=90°,
∴∠ACD=45°,
∴∠ACB=∠DCP+∠ACD=75°,
故答案为:75.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这题这么简单的嘛,过P点做平行于AC的PD,角ABC45 APC60 则APD75 于是角ACB105
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |