已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x4+x3y+x2y2+xy3+y4的值。要过程谁详细选谁!答案为12499...
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求
x4+x3y+x2y2+xy3+y4的值。
要过程 谁详细选谁! 答案为12499 展开
x4+x3y+x2y2+xy3+y4的值。
要过程 谁详细选谁! 答案为12499 展开
展开全部
x^2y+y^2x=xy(x+y)=66 令xy=t1 x+y=t2 则t1+t2=17 t1t2=66 所以t1,t2为方程t^2-17t+66=0
的根 两个根分别为6,11 则xy=6,x+y=11或xy=11,x+y=6 x,y为方程a^2-11a+6=0的根,
而方程a^2-6a+11=0无根 xy=6,x+y=11 x^2+y^2=11^2-2×6=109 x^2y^2=36
x^4+y^4=109^2-36×2=11809
原式=11809+6×109+36=12499
的根 两个根分别为6,11 则xy=6,x+y=11或xy=11,x+y=6 x,y为方程a^2-11a+6=0的根,
而方程a^2-6a+11=0无根 xy=6,x+y=11 x^2+y^2=11^2-2×6=109 x^2y^2=36
x^4+y^4=109^2-36×2=11809
原式=11809+6×109+36=12499
展开全部
xy=a
x+y=b
x2y+xy2=xy(x+y)=66
xy+x+y=17
ab=66
a=17-b
(17-b)b=66
b^2-17b+66=0
(b-11)(b-6)=0
(b-11)=0
b=11
(b-6)=0
b=6
a=17-b=17-6=11
a=17-b=17-11=6
xy=6或11
x+y=11或6
1、
xy=6
x+y=11
(x+y)^2=x^2+y^2+2xy=121
x^2+y^2=36-2xy=121-12=109
(x^2+y^2)^2=x^4+y^4+2x^2y^2=11881
x^4+y^4=196-2x^2y^2=11881-72=11809
x4+x3y+x2y2+xy3+y4
=x4+y4+xy(x2+y2)+x2y2
=11809+6*109+6*6
=12499
2、
xy=11
x+y=6
(x+y)^2=x^2+y^2+2xy=36
x^2+y^2=36-2xy=36-2*11=14
(x^2+y^2)^2=x^4+y^4+2x^2y^2=196
x^4+y^4=196-2x^2y^2=196-2*11*11=-46
x4+x3y+x2y2+xy3+y4
=x4+y4+xy(x2+y2)+x2y2
=-46+11*14+11*11
=229
x+y=b
x2y+xy2=xy(x+y)=66
xy+x+y=17
ab=66
a=17-b
(17-b)b=66
b^2-17b+66=0
(b-11)(b-6)=0
(b-11)=0
b=11
(b-6)=0
b=6
a=17-b=17-6=11
a=17-b=17-11=6
xy=6或11
x+y=11或6
1、
xy=6
x+y=11
(x+y)^2=x^2+y^2+2xy=121
x^2+y^2=36-2xy=121-12=109
(x^2+y^2)^2=x^4+y^4+2x^2y^2=11881
x^4+y^4=196-2x^2y^2=11881-72=11809
x4+x3y+x2y2+xy3+y4
=x4+y4+xy(x2+y2)+x2y2
=11809+6*109+6*6
=12499
2、
xy=11
x+y=6
(x+y)^2=x^2+y^2+2xy=36
x^2+y^2=36-2xy=36-2*11=14
(x^2+y^2)^2=x^4+y^4+2x^2y^2=196
x^4+y^4=196-2x^2y^2=196-2*11*11=-46
x4+x3y+x2y2+xy3+y4
=x4+y4+xy(x2+y2)+x2y2
=-46+11*14+11*11
=229
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
xy+x+y=17,x2y+xy2=66
设xy=m1 x+y=m2
则有 m1+m2=17 m1*m2=66=11*6
已知x、y均为实数 m1 m2也均为实数
m1=6 m2=11 另一解舍弃
x4+x3y+x2y2+xy3+y4=[(x+y)2-2xy][(x+y)2-xy]-(xy)2=(121-12)(121-6)-36=12499
设xy=m1 x+y=m2
则有 m1+m2=17 m1*m2=66=11*6
已知x、y均为实数 m1 m2也均为实数
m1=6 m2=11 另一解舍弃
x4+x3y+x2y2+xy3+y4=[(x+y)2-2xy][(x+y)2-xy]-(xy)2=(121-12)(121-6)-36=12499
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令X+Y=A XY=B
则A+B=17,AB=66
算得A=11,B=6。(当B=11,A=6时,(X+Y)²<4XY,不满足基本不等式,舍弃)
X4+X3Y+X²Y²+XY3+Y4=(A²-2B)B+(A²-2B)²-B²=(A²-2B)(A²-B)-B²=A^4+B²-3BA²=11^4+6²-3*6*11²=12499
则A+B=17,AB=66
算得A=11,B=6。(当B=11,A=6时,(X+Y)²<4XY,不满足基本不等式,舍弃)
X4+X3Y+X²Y²+XY3+Y4=(A²-2B)B+(A²-2B)²-B²=(A²-2B)(A²-B)-B²=A^4+B²-3BA²=11^4+6²-3*6*11²=12499
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询