已知三角形ABC的周长为根号2,加1,且sinA+sinB=根号2乘以sinC, 1,求AB的长
展开全部
(1)由正弦定理a/sinA=b/sinB=c/sinC=2R(R是三角形ABC的外接圆圆心)(AB=c,BC=a,AC=b)
得:(a/2R)+(b/2R)=(√2)c/2R
又因为:a+b+c=1+√2
所以:AB=c=1
(2)因为:S三角形ABC=(1/2)absinC=(1/6)sinC
所以:ab=1/3
又因为:a+b+c=1+√2,c=1
所以:a+b=√2
由余弦定理得cosC=(a^2+b^2-c^2)/(2ab)=[(a+b)^2-c^2-2ab]/(2ab)=[(a+b)^2-c^2]/(2ab)-1
=(2-1)/(2/3)-1=3/2-1=1/2
所以:C=60°
得:(a/2R)+(b/2R)=(√2)c/2R
又因为:a+b+c=1+√2
所以:AB=c=1
(2)因为:S三角形ABC=(1/2)absinC=(1/6)sinC
所以:ab=1/3
又因为:a+b+c=1+√2,c=1
所以:a+b=√2
由余弦定理得cosC=(a^2+b^2-c^2)/(2ab)=[(a+b)^2-c^2-2ab]/(2ab)=[(a+b)^2-c^2]/(2ab)-1
=(2-1)/(2/3)-1=3/2-1=1/2
所以:C=60°
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.由正弦定理知(a+b+c)/(sinA+sinB+sinC)=c/sinC,由sinA+sinB=根号2乘以sinC得
sinA+sinB+sinC=(根号2+1)sinC,所以2/[(根号2+1)sinC]=c/sinC,故c=2(根号2-1)
sinA+sinB+sinC=(根号2+1)sinC,所以2/[(根号2+1)sinC]=c/sinC,故c=2(根号2-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询