急!初二数学三角形相似

如图,在矩形ABCD中,E为AD中点,EF垂直EC交AB于F,连接FC(AB》AE)设AB/BC=k是否存在这样的k值,使得△AEF相似于△BCF。若存在,证明你的结论,... 如图,在矩形ABCD中,E为AD中点,EF垂直EC交AB于F,连接FC(AB》AE)
设AB/BC=k是否存在这样的k值,使得△AEF相似于△BCF。若存在,证明你的结论,并求k. 要解释
展开
百度网友bcf2366
2011-04-22
知道答主
回答量:17
采纳率:0%
帮助的人:18.3万
展开全部
(1)要求两三角形相似,已知条件有一组直角,我们只需再证得一组对应角相等即可得出两三角形相似,根据FE⊥EC,因此∠AEF和∠DCE都是∠DEC的余角,因此∠AEF=∠DCE,我们只要再得出∠BCE=∠FCE即可,可通过构建全等三角形来求解,延长FE交CD于G,我们不难得出△AEF和△GED全等,那么EF=EG,再根据一组直角和一条公共边我们可得出△FEC和△GEC全等,即可得出∠FCE=∠GCE也就得出了∠AEF=∠ECF,于是就凑齐了两三角形相似的条件.
(2)要想使两三角形相似,已知的条件有一组直角,那么分两种情况进行讨论:
当∠AFE=∠FCB时,那么∠AFE就和∠BFC互余,因此∠EFC就是直角,而∠FEC也是直角因此这种情况是不成立的.
当∠AEF=∠FCB时,AE:BC=AF:BF,那么由于E是AD中点,因此BC=2AE,所以我们可得出BF=2AF,即AB=3AF,又根据(1)中AF=GD,AB=CD,我们可在△CEG中根据△EGD和△EDC相似,得出关于GD、ED、DC的比例关系,也就是AF、AB、AE的比例关系,有了AB=3AF,就能求出ED与AF的比例关系,也就求出了BC与AF的比例关系,以AF为中间值即可得出AB与BC的比例关系,也就求出了k的值.
解:(1)△AEF∽△ECF.证明如下:
延长FE与CD的延长线交于G.
∵E为AD的中点,AE=DE,∠AEF=∠GED,
∴Rt△AEF≌Rt△DEG.∴EF=EG.
∵CE=CE,∠FEC=∠CEG=90°,
∴Rt△EFC≌Rt△EGC.
∴∠AEF=∠DCE=∠ECF.
∵∠A=∠FEC=90°,
∴Rt△AEF∽Rt△ECF.

(2)设AD=2x,AB=b,DG=AE=a,则FB=b-a,
在Rt△ECG中,x2=ab,
延长EF并与CB的延长线交于H,
假定△AEF∽△BFC,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是: AFAE= BFBC,即 ax= b-a2x,得b=3a.
所以x2=ab=3a2,因此x= 3a,
于是k= AB/BC= b√2x= 3a√2/3a= √3/2.
抱歉根号打不出来,你参照一下其他楼的跟这个一起看吧
水滴的温暖
2011-04-20 · TA获得超过1731个赞
知道答主
回答量:32
采纳率:0%
帮助的人:32.2万
展开全部
(2)
由(1)得
角EFC=角EFA
因为角EFC不是直角
所以角EFA不可能等于角FCB
若△AEF与△BFC相似
则角CFB=角EFC=角EFA=60度
设AF=a
BC=2AE=2√3a
FB=0.5FC=EF=2a
AB=3a
K=AB/BC=√3/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陈庭庭天秤座
2011-04-20 · TA获得超过248个赞
知道答主
回答量:65
采纳率:0%
帮助的人:54万
展开全部
要△AEF相似于△BCF,只需AF/AE=BF/BC,可转化只需BF=2AF,可设AF=1,BF=2,则AB=3,EF^2=AF^2+AE^2,EC^2=AE^2+AB^2,FC^2=4AE^2+BC^2,由EF^2+EC^2=FC^2可求得AE=根号3,则K=3/(2X根号3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式