在Rt△ABC中,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2,过D2作D2E2⊥AC于E2,连接BE2交C

可用递推法来做此题首先△BD1E1=△ABC-△AD1E1-△BCE1=1/4△ABC△BD2E2=1/4△BE1C而△BE1C=1/2△ABC所以△BD2E2=1/8△... 可用递推法来做此题
首先△BD1E1=△ABC-△AD1E1-△BCE1=1/4△ABC
△BD2E2=1/4△BE1C
而△BE1C=1/2△ABC
所以△BD2E2=1/8△ABC
………………
由此一直推到N,就是△BDnEn=1/2n+1△ABC

为什么S△BD2E2=S1/4△BE1C
????
在Rt△ABC中,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2,过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3------,如此继续,可以依次得到点D4,D5,---------,Dn,分别记△BD1E1,△BD2E2,△BD3E3,------,△BDnEn的面积为S1,S2,S3,-------Sn,则Sn=__________S△ABC(用含n的代数式表示)
图可以根据题目自己画,请高手吗能写出具体的过程
展开
回忆5以前
2011-05-07
知道答主
回答量:6
采纳率:0%
帮助的人:2.5万
展开全部
解:易知D1E1‖BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
根据直角三角形的性质以及相似三角形的性质可知:D1E1= 1/2BC,CE1= 1/2AC,S1= 1/2²S△ABC;
∴在△ACB中,D2为其重心,
∴D2E1= 1/3BE1,
∴D2E2= 1/3BC,CE2= 1/3AC,S2= 1/3²S△ABC,
∴D3E3= 1/4BC,CE2= 1/4AC,S2= 1/4²S△ABC…;
∴Sn= 1/(n+1)²S△ABC.
zh_sp
2011-05-01
知道答主
回答量:16
采纳率:0%
帮助的人:0
展开全部
可用特例归纳法来做此题,假设Rt△ABC为等腰三角形可得:
首先△BD1E1=△ABC-△AD1E1-△BCE1=1/4△ABC
△BD2E2=1/4△BE1C
而△BE1C=1/2△ABC
所以△BD2E2=1/8△ABC
………………
大胆猜想:△BDnEn=1/2n+1△ABC
证明:(请参考高中数学不完全归纳法)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式